DeepMind: KI «AlphaTensor» entdeckt neuen mathematischen Algorithmus

Stefan Schönbächler
Stefan Schönbächler

USA,

«AlphaTensor» von DeepMind ist ein mathematischer Durchbruch gelungen. Ein neuer Algorithmus ermöglicht eine höhere Effizienz bei der Matrizenmultiplikation.

DeepMind
DeepMind steckt hinter Künstlichen Intelligenzen (KI) wie AlphaZero und AlphaGo. (Symbolbild) - Keystone

Das Wichtigste in Kürze

  • «AlphaTensor» ist eine KI von Googles Tochterfirma DeepMind.
  • Sie hat einen neuen, mathematischen Algorithmus entdeckt.
  • Damit soll es möglich sein, Matrizen bis zu 20 Prozent schneller zu multiplizieren.

Googles Tochterunternehmen DeepMind ist im Bereich der Mathematik ein neuer Durchbruch gelungen. Die KI «AlphaTensor» hat einen Weg gefunden, Matrizen bis zu 20 Prozent effizienter zu multiplizieren.

Matrizenmultiplikation ist essenziell für die digitale Signalverarbeitung – und somit auch enorm wichtig für die meisten Computer: Grafische Darstellung, digitale Kommunikation und wissenschaftliche Nutzung sind davon abhängig. Seit 1969 galt der Algorithmus des deutschen Mathematikers Volker Strassen als die effizienteste Methode, um zwei Matrizen zu multiplizieren.

DeepMind
AlphaGo, ein Vorgänger von AlphaZero und AlphaTensor von DeepMind, schrieb mit seinen Erfolgen bei Go Geschichte. - Keystone

Forscher bei DeepMind haben die KI «AlphaTensor» entwickelt, um in diesem Bereich der Mathematik neue Methoden zu entdecken. Sie ist Nachfolger von «AlphaGo» und «AlphaZero», welche bereits mit ihrem Können bei Brettspielen wie Go und Schach Schlagzeilen machten.

DeepMind AlphaTenser
AlphaTenser von DeepMind suchte so nach einem neuen Algorithmus für die Matrizenmultiplikation. - DeepMind

Die Forscher gingen bei AlphaTensor mit einer ähnlichen Methode vor: Sie liessen die KI ein «Spiel» spielen, dessen Ziel es ist, einen neuen Weg zur Matrizenmultiplikation zu finden. Wurde ein korrekter Algorithmus gefunden, wurde er auf spezifischer Hardware auf seine Effizienz getestet.

Gesucht, gefunden: Um eine 4x5-Matrix mit einer 5x5-Matrix zu multiplizieren, braucht man auf dem herkömmlichen Weg 100 Rechenoperationen. Strassens Algorithmus hat diese Zahl auf 80 Multiplikationen heruntergebrochen. Mit der neuen Methodik von AlphaTensor braucht man nur noch 76 Operationen.

Zunächst klingt das nach einer bescheidenen Verbesserung. Dennoch sind die Implikationen gross. Auf der getesteten Hardware wurde laut den Entwicklern das gesuchte Ergebnis um 10 bis 20 Prozent schneller erreicht. Würde ein Supercomputer jeweils 10 bis 20 Prozent schneller arbeiten, könnte damit einiges an Zeit und Energie gespart werden.

Kommentare

Weiterlesen

Lagerist Aviatik
1 Interaktionen

Mehr in News

Mehr aus USA

polestar
5 Interaktionen
hegseth
1 Interaktionen
zuckerberg
1 Interaktionen
17 Interaktionen