Künstliche Intelligenz

Künstliche Intelligenz unterstützt SLF-Lawinenwarner

Keystone-SDA
Keystone-SDA

Prättigau,

Im Lawinenforschungsinstitut SLF unterstützt künftig eine künstliche Intelligenz die Lawinenwarner. Die Genauigkeit der Vorhersagen liegen bei rund 75 Prozent.

Lawine Winter
Zwei Bergsteiger aus Österreich werden von einer Lawine erfasst. (Symbolbild) - Keystone

Das Wichtigste in Kürze

  • In Davos GR schätzt künftig eine künstliche Intelligenz die Lawinengefahr ein.
  • Sie soll menschliche Lawinenwarner unterstützen, aber nicht ersetzen.
  • Die Genauigkeit des Computers liege bei 75 Prozent.

Forschende des Lawinenforschungsinstituts SLF haben einer Maschine beigebracht, die Lawinengefahr selbstständig zu beurteilen. Sie schnitt bei der automatischen Vorhersage der regionalen Lawinen-Gefahrenstufe etwa gleich gut ab wie ein erfahrener Lawinenprognostiker.

Der vollständig datengetriebene Ansatz, bei dem ein Computer mithilfe von künstlicher Intelligenz die Lawinengefahr einschätzt, kommt seit dem vergangenen Winter denn auch bereits zum Einsatz.

Das teilte das WSL-Institut für Schnee- und Lawinen-Forschung SLF am Mittwoch mit. Allerdings würden menschliche Lawinenprognostiker nicht überflüssig. Vielmehr dienten die Resultate, die der Computer ausspucke, als Zweitmeinung.

Meinung von Maschine als Vergleich

Normalerweise schätzen drei Lawinenwarnerinnen oder -warner unabhängig voneinander, beruhend auf vorhandenen Daten, die Gefahrensituation ein. Statt nun direkt aus diesen Einschätzungen das Lawinenbulletin für den nächsten Tag zu erstellen, wird zuerst die menschliche mit der maschinellen Meinung abgeglichen.

«Der Computer wertet die Daten anders aus als wir Menschen. Daher kommt er manchmal auch zu einem etwas anderen Ergebnis», liess sich Lawinenwarner Frank Techel in der Mitteilung zitieren. Dann werde die konsolidierte Einschätzung der Expertinnen und Experten nochmals kritisch überprüft - und allenfalls angepasst.

Lawinenwarnung
EIn Schild warnt vor Lawinen. - Keystone

Techel ist Mitautor der Studie im Fachblatt «Natural Hazards and Earth System Sciences», in der das Team um SLF-Forscherin Cristina Pérez-Guillén den datengetriebenen Ansatz vorstelle. Demnach trainierten die Forschenden das Modell mit einem grossen meteorologischen Datensatz von mehr als zwanzig Jahren. Der Computer brachte sich bei, Zusammenhänge zwischen den Wetterdaten und den dazugehörigen, von Menschen prognostizierten Warnstufen zu erkennen.

Genauigkeit bei 75 Prozent

Die Genauigkeit der Modelle, also der Prozentsatz der korrekten Gefahrenstufenvorhersagen, lag gemäss den Forschenden bei rund 75 Prozent. Das entspreche etwa der Treffsicherheit von professionellen Lawinenprognostikern.

Dem SLF zufolge eignet sich das Modell derzeit nur für trockene Lawinen. Modelle für Nassschneelawinen und für die Stabilität der Schneedecke lägen aber bereits vor und sollen im kommenden Winter getestet werden.

Kommentare

Weiterlesen

Sulden
1 Interaktionen
Wegen Regen
Frauengesundheit
7 Interaktionen
Frauengesundheit

MEHR KüNSTLICHE INTELLIGENZ

Arzt, Künstliche Intelligenz
3 Interaktionen
Uni Bern
Künstliche Intelligenz
104 Interaktionen
«Merke es immer»
Jumbo
12 Interaktionen
Schnur und Co.
Künstliche Intelligenz
336 Interaktionen
Trotz Fake News

MEHR AUS GRAUBüNDEN

Eis/Eishockey
Eishockey
6 Interaktionen
In zwei Bereichen
Unfall
1 Interaktionen
Davos Platz GR
HC Davos Brendan Lemieux
18 Interaktionen
HCD-Stürmer